(本小题满分10分) 某校有学生会干部7名,其中男干部有,A,A,A共4人;女干部有B,B,B共3人.从中选出男、女干部各1名,组成一个小组参加某项活动. (Ⅰ)求A被选中的概率; (Ⅱ)求A,B 不全被选中的概率.
已知函数 (Ⅰ)求的单调区间; (Ⅱ)求在区间上的最值.
命题p:函数有零点; 命题q:函数是增函数, 若命题是真命题,求实数的取值范围.
设函数. (1)若,试求函数的单调区间; (2)过坐标原点作曲线的切线,证明:切点的横坐标为1; (3)令,若函数在区间(0,1]上是减函数,求的取值范围.
已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B. (1)求椭圆C的标准方程; (2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.
已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{an}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上. (Ⅰ)求数列{an},{bn}的通项公式an和bn; (Ⅱ)设cn=an•bn,求数列{cn}的前n项和Tn