(本题满分12分).如图:平面平面,是正方形,矩形,且,是的中点。(1)求证平面平面;(2)求四面体的体积。
(本小题满分12分)三角形ABC中,AB=6,BC=8,CA=10,绕AB边旋转一周形成一个几何体,(1)求出这个几何体的表面积;(2)求出这个几何体的体积.
(本小题满分10分)通过点A(0,a)的直线与圆相交于不同的两点B、C,在线段BC上取一点P,使=,设点B在点C的左边,(1)试用a和k表示P点的坐标;(2)求k变化时P点的轨迹;(3)证明不论a取何值时,上述轨迹恒过圆内的一定点.
(本小题满分13分)已知是腰长为2的等腰直角三角形(如图1),,在边上分别取点,使得,把沿直线折起,使=90°,得四棱锥(如图2).在四棱锥中,(I)求证:CE⊥AF; (II)当时,试在上确定一点G,使得,并证明你的结论.
设函数f(x) =" lnx" +ln(2-x)+ ax (a>0).(1)当a = 1时,求f(x)的单调区间;(2)若f(x)在(0,1]上的最大值为,求a的值.
用数学归纳法证明: (n∈N*)