(本题满分12分)中心在原点的椭圆与抛物线有一个公共焦点,且其离心率是双曲线的离心率的倒数,(1)求椭圆方程。(2)若(1,)是直线被椭圆截得的线段的中点,求直线的方程。
(本小题满分14分)已知是等差数列,,. (1)求数列的通项公式; (2)对一切正整数,设,求数列的前项和.
(本小题满分12分)已知函数,. (1)求的最小正周期和最大值; (2)若,求的值.
(本小题满分15分)已知函数, (1)若a=1,试判断并用定义证明函数f(x)在[1,4]上的单调性; (2)当时,求函数f(x)的最大值的表达式M(a); (3)是否存在实数a,使得f(x)=3有且仅有3个不等实根,且它们成等差数列,若存在,求出所有a的值,若不存在,说明理由.
椭圆C:的离心率为,P(m,0)为C的长轴上的一个动点,过P点斜率为的直线l交C于A、B两点.当m=0时,. (1)求C的方程; (2)证明:为定值.
如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点. (1)求证:平面BCE⊥平面CDE; (2)求二面角B-EF-D的余弦值.