已知函数.(Ⅰ) 求f –1(x);(Ⅱ) 若数列{an}的首项为a1=1,(nÎN+),求{an}的通项公式an;(Ⅲ) 设bn=an+12+an+22+¼+a2n+12,是否存在最小的正整数k,使对于任意nÎN+有bn<成立.若存在,求出k的值;若不存在,说明理由.
(本小题满分12分)在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.(1)求证:EF∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1
(本小题满分12分)如图,在四边形中,点C(1,3).(1)求OC所在直线的斜率;(2)过点C做CD⊥AB于点D,求CD所在直线的方程.
(满分14分) 定义在上的函数同时满足以下条件:①在上是减函数,在上是增函数;②是偶函数;③在处的切线与直线垂直. (1)求函数的解析式;(2)设,求函数在上的最小值.
已知椭圆(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-,0).若,求直线l的倾斜角;
设,若直线与轴相交于点,与轴相交于,且与圆相交所得弦的长为2,为坐标原点,求面积的最小值.