为了解某校学生的视力情况,现采用随机抽样的方式从该校的A,B两班中各抽5名学生进行视力检测.检测的数据如下:A班5名学生的视力检测结果:4.3,5.1,4.6,4.1,4.9.B班5名学生的视力检测结果:5.1,4.9,4.0,4.0,4.5.(1)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好?(2)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明)(3)现从A班的上述5名学生中随机选取3名学生,用X表示其中视力大于4.6的人数,求X的分布列和数学期望.
已知, ,为锐角, 求 (1)的值.(2)的值.
(本小题满分14分)设是定义在[-1,1]上的偶函数,的图象与的图象关于直线对称,且当x∈[ 2,3 ] 时,222233. (1)求的解析式; (2)若在上为增函数,求的取值范围; (3)是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由.
(本小题满分13分)设函数的图象经过原点,在其图象上一点P(x,y)处的切线的斜率记为. (1)若方程=0有两个实根分别为-2和4,求的表达式; (2)若在区间[-1,3]上是单调递减函数,求的最小值.
定义在R上的单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y). (1)求证f(x)为奇函数; (2)若f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.
已知函数是上的奇函数,当时,, (1)判断并证明在上的单调性; (2)求的值域; (3)求不等式的解集。