先化简,再求值:,其中,a=.
如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=BFD.(1)求证:FD是⊙O的一条切线;(2)若AB=10,AC=8,求DF的长.
先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.
如图,抛物线y=-x2+bx+c与直线交于C、D两点,其中点C在y轴上,点D的坐标为(3,).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F。(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.
在Rt△ABC中,AB=BC,∠B=90°,将一块等腰直角三角板的直角顶点O放在斜边AC上,将三角板绕点O旋转.(1)当点O为AC中点时,①如图1,三角板的两直角边分别交AB,BC于E、F两点,连接EF,猜想线段AE、CF与EF之间存在的等量关系(无需证明);②如图2,三角板的两直角边分别交AB,BC延长线于E、F两点,连接EF,判断①中的猜想是否成立?若成立,请证明;若不成立,请说明理由;(2)当点O不是AC中点时,如图3,三角板的两直角边分别交AB,BC于E、F两点,若,求的值.
如图,一次函数的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=的图象在第二象限交于点C,其中点A(2,0),点B是AC的中点.(1)求点C的坐标;(2)求一次函数的解析式.