现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(1)求张同学至少取到1道乙类题的概率;(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对每道甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用表示张同学答对题的个数,求的分布列和数学期望.
在以O为原点的直角坐标系中,点A(4,-3)为△OAB的直角顶点,已知|AB|=2|OA|,且点B的纵坐标大于0。 (Ⅰ)求的坐标; (Ⅱ)求圆关于直线OB对称的圆的方程。
已知函数 (Ⅰ)若函数y=f(x)的图象切x轴于点(2,0),求a、b的值; (Ⅱ)设函数y="f(x)" 的图象上任意一点的切线斜率为k,试求的充要条件; (Ⅲ)若函数y=f(x)的图象上任意不同的两点的连线的斜率小于1,求证。
已知:复数,,且,其中、为△ABC的内角,、、为角、、所对的边. (Ⅰ)求角的大小; (Ⅱ) 若,求△ABC的面积.
已知函数 (1)求反函数 (2)判断是奇函数还是偶函数并证明。
设数列{an}的首项a1∈(0,1),,n=2,3,4,….(Ⅰ)求{an}的通项公式;(Ⅱ)设,证明bn<bn+1,其中n为正整数.