随机抽取某厂的某种产品100件,经质检,其中有一等品63件、二等品25件、三等品10件、次品2件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为.(1)求的分布列;(2)求1件产品的平均利润(即的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于5.13万元,则三等品率最多是多少?
在等差数列中,,.令,数列的前项和为. (1)求数列的通项公式; (2)求数列的前项和; (3)是否存在正整数,(),使得,,成等比数列?若存在,求出所有的,的值;若不存在,请说明理由.
在中,角的对边分别为,且 (Ⅰ)求的值; (Ⅱ)若,,求向量在方向上的投影.
设向量 (I)若,求的值; (II)设函数求的最大值及的单调递增区间.
已知是递增的等差数列,,是方程的根。 (I)求的通项公式; (II)求数列的前项和.
已知. (Ⅰ)求的值; (Ⅱ)求的值.