将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C的参数方程; (2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.
已知函数,若,求实数的值.
已知函数,设函数在区间上的最大值为. (1)若,试求出; (2)若对任意的,恒成立,试求出的最大值.
已知椭圆经过点,对称轴为坐标轴,焦点,在轴上,离心率. (1)求椭圆的方程; (2)求的角平分线所在直线的方程; (3)在椭圆上是否存在关于直线对称的相异两点?若存在,请找出;若存在,说明理由.
如图,在四棱锥中,底面为菱形,,为的中点. (1)若,求证:平面平面; (2)设点是线段上的一点,,且平面. (1)求实数的值; (2)若,且平面平面,求二面角的大小.
数列满足:,(). (1)证明:数列是等比数列; (2)求数列的通项公式; (3)设,数列的前项和为,求证:.