如图,EP交圆于E、C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.
(1)求证:AB为圆的直径; (2)若AC=BD,求证:AB=ED.
若,使关于的不等式在上的解集不是空集,设的取值集合是;若不等式的解集为,设实数的取值集合是,试求当时,的值域。
已知定直线:,,为极点,为上的任意一点连接,以为一边作正三角形。,,三点按顺时针方向排列,求当点在上运动时点的极坐标方程,并化成直角坐标方程。
数列中,,,其中>0,对于函数(n≥2)有. (1)求数列的通项公式; (2)若,, +,求证:
已知函数f(x)=ln(1+x)-x,g(x)=xlnx. (1)求函数f(x)的最大值; (2)设0<<b,证明:g()﹢g(b)﹣<(b﹣)ln2.
已知函数(a,b为常数)且方程f(x)-x+12=0有两个实根为x1="3," x2=4. (1)求函数f(x)的解析式; (2)设k>1,解关于x的不等式;.