学校为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响.(Ⅰ)求移栽的4株大树中恰有3株成活的概率;(Ⅱ)设移栽的4株大树中成活的株数为,求分布列与期望.
(本小题满分13分)已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;是过点P(0,2)且互相垂直的两条直线,交E于A,B两点,交E交C,D两点,AB,CD的中点分别为M,N。(1)求椭圆E的方程;(2)求k的取值范围;(3)求的取值范围。
(本小题满分13分)在数列。(1)求证:数列是等差数列,并求数列的通项公式;(2)设,求数列的前项和。
(本小题满分12分)在如图所示的空间几何体中,平面平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在的平分线上。(1)求证:DE//平面ABC;(2)求二面角E—BC—A的余弦;(3)求多面体ABCDE的体积。
(本小题满分12分)甲乙两个盒子里各放有标号为1,2,3,4的四个大小形状完全相同的小球,从甲盒中任取一小球,记下号码后放入乙盒,再从乙盒中任取一小球,记下号码,设随机变量(1)求的概率;(2)求随机变量X的分布列及数学期望。
(本小题满分12分)在,角A,B,C的对边分别为。(1)判断的形状;(2)若的值。