设函数(Ⅰ)当时,求的展开式中二项式系数最大的项;(Ⅱ)对任意的实数,证明 :(是的导函数);
已知数列{}中,为其前n项和,且,当时,恒有(为常数).(Ⅰ)求常数的值;(Ⅱ)当时,求数列{}的通项公式;(Ⅲ)设,数列的前n项和为,求证:.
从某批产品中,有放回地抽取产品两次,每次随机抽取1件,假设事件:“取出的2件产品中至多有1件是二等品”的概率.(Ⅰ)求从该批产品中任取1件是二等品的概率;(Ⅱ)若该批产品共20件,从中任意抽取2件,X表示取出的2件产品中二等品的件数,求X的分布列与期望.
(本大题满分10分)选修4-5:不等式选讲已知函数(Ⅰ)若的解集为,求实数的值;(Ⅱ)当且时,解关于的不等式
(本小题满分10分) 选修4-4:坐标系与参数方程在直角坐标系中,以原点为极点,以轴正半轴为极轴,圆的极坐标方程为(Ⅰ)将圆的极坐标方程化为直角坐标方程;(Ⅱ)过点作斜率为1直线与圆交于两点,试求的值.
(本小题满分10分)选修4-1:几何证明选讲如图所示,AC为⊙O的直径,D为弧BC的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:ACBC= 2ADCD.