已知、两盒中都有红球、白球,且球的形状、大小都相同,盒子中有个红球与个白球,盒子中有个红球与个白球().(1)分别从、中各取一个球,表示红球的个数;①请写出随机变量的分布列,并证明等于定值;②当为何值时,取到最小值,并求出最小值.(2)在盒子中不放回地摸取3个球,事件:在第一次取到红球后,以后两次都取到白球,事件:在第一次取到白球后,以后两次都取到红球,若概率,求的值.
在中,a、b、c分别为角A、B、C的对边,且满足 (I)求角大小; (II)若,当取最小值时,求的面积.
如图,四棱锥 S - A B C D 中,底面 A B C D 为矩形, S D ⊥ 底面 A B C D , A D = 2 , B D = S D = 2 , M 在侧棱 S C 上, ∠ A B M = 60 ° . (I)证明: M 是侧棱 S C 的中点; (Ⅱ)求二面角 S - A M - B 的大小.
在数列 a n 中, a 1 = 1 , a n + 1 = 1 + 1 n a n + n + 1 2 n
(I)设 b n = a n n ,求数列 b n 的通项公式; (II)求数列 a n 的前 n 项和 S n .
甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。 (1)求甲获得这次比赛胜利的概率; (2)设 ξ 表示从第3局开始到比赛结束所进行的局数,求 ξ 的分布列及数学期望。
设函数 f x = x 3 + 3 b x 2 + 3 c x 在两个极值点 x 1 , x 2 ,且 x 1 ∈ - 1 , 0 , x 2 ∈ 1 , 2 。 (Ⅰ)求 b , c 满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点 b , c 的区域;
(II)证明: - 10 ≤ f x 2 ≤ - 1 2