甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。 (1)求甲获得这次比赛胜利的概率; (2)设 ξ 表示从第3局开始到比赛结束所进行的局数,求 ξ 的分布列及数学期望。
.已知抛物线的准线为,焦点为F,的圆心在轴的正半轴上,且与轴相切,过原点O作倾斜角为的直线,交于点A,交于另一点B,且AO=OB=2.(1)求和抛物线C的方程;(2)若P为抛物线C上的动点,求的最小值;(3)过上的动点Q向作切线,切点为S,T,求证:直线ST恒过一个定点,并求该定点的坐标.
设.(1) 当时,求的单调区间.(2)当时,讨论的极值点个数。
.如图(1),在直角梯形ABCD中,,,,,,以DE为轴旋转至图(2)位置,F为DC的中点. (1)求证:平面(2)若平面平面,且BC垂直于AE求①二面角的大小.②直线BF与平面ABED所成角的正弦值
已知等比数列中,.记数列的前n项和为.(1)求数列的通项公式;(2)数列中,,数列的前n项和满足:,, 求:.
在中,角的对边分别为.已知,.(1)求的值.(2)求的取值范围.