甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。 (1)求甲获得这次比赛胜利的概率; (2)设 ξ 表示从第3局开始到比赛结束所进行的局数,求 ξ 的分布列及数学期望。
如图所示,要用栏杆围成一个面积为50平方米的长方形花园,其中有一面靠墙不需要栏杆,其中正面栏杆造价每米200元,两个侧面栏杆每米造价50元,设正面栏杆长度为米. (1)将总造价y表示为关于的函数; (2)问花园如何设计,总造价最少?并求最小值.
已知等差数列的第二项为8,前10项和为185。 (1)求数列的通项公式; (2)若从数列中,依次取出第2项,第4项,第8项,……,第项,……按原来顺序组成一个新数列,试求数列的通项公式和前n项的和
已知△ABC中,各点的坐标分别为,求: (1)BC边上的中线AD的长度和方程; (2)△ABC的面积.
已知对一切恒成立,求实数的取值范围.
已知f(x)的定义域为(0,+∞),且满足f(2)=1,f(xy)=f(x)+f(y),又当x2>x1>0时,f(x2)>f(x1). (1)求f(1)、f(4)、f(8)的值; (2)若有f(x)+f(x-2)≤3成立,求x的取值范围.