.已知抛物线的准线为,焦点为F,的圆心在轴的正半轴上,且与轴相切,过原点O作倾斜角为的直线,交于点A,交于另一点B,且AO=OB=2.(1)求和抛物线C的方程;(2)若P为抛物线C上的动点,求的最小值;(3)过上的动点Q向作切线,切点为S,T,求证:直线ST恒过一个定点,并求该定点的坐标.
已知函数满足, 且对于任意恒有成立。(1) 求实数的值;(2)设若存在实数,当时,恒成立,求实数的最大值。
我市某蔬菜种植户计划建造一个室内面积为800的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留1宽的通道,沿前侧内墙保留3宽的空地(如图),中间部分种植蔬菜。(1)当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?(2)由于受地形条件的限制,矩形温室的边长不得少于25,则蔬菜的最大种植面积是多少?
已知不等式的解集为,不等式的解集为,.(1)求集合;(2)若,求实数的取值范围;(3)若存在,使得不等式成立, 求实数的取值范围.
已知命题p:函数y=xm在(0,+∞)为减函数命题q:复数z=m2-5m-6+(m-2)i,(m∈R)在复平面内的对应点在第三象限.如果p或q为真命题,p且q为假命题,求m的取值范围.
已知函数f(x)=是定义在(-1,1)上的奇函数,且f()=.(1)试确定函数f(x)的解析式;(2)用定义证明f(x)在(-1,1)上是增函数;(3)解不等式f(t-1)+f(t)<0.