如图,四棱锥 S - A B C D 中,底面 A B C D 为矩形, S D ⊥ 底面 A B C D , A D = 2 , B D = S D = 2 , M 在侧棱 S C 上, ∠ A B M = 60 ° . (I)证明: M 是侧棱 S C 的中点; (Ⅱ)求二面角 S - A M - B 的大小.
己知圆直线. (1)求与圆相切,且与直线平行的直线的方程; (2)若直线与圆有公共点,且与直线垂直,求直线在轴上的截距的取值范围.
设集合,,. (1)求; (2)若,求实数的取值范围.
已知函数. (1)求函数的定义域; (2)若对任意恒有,试确定的取值范围.
已知函数,函数. (1)求函数与的解析式,并求出,的定义域; (2)设,试求函数的最值.
如图所示,正方形与直角梯形所在平面互相垂直,,,. (1)求证:平面; (2)求证:平面; (3)求四面体的体积.