如图,四棱锥 S - A B C D 中,底面 A B C D 为矩形, S D ⊥ 底面 A B C D , A D = 2 , B D = S D = 2 , M 在侧棱 S C 上, ∠ A B M = 60 ° . (I)证明: M 是侧棱 S C 的中点; (Ⅱ)求二面角 S - A M - B 的大小.
已知椭圆:.(1)椭圆的短轴端点分别为(如图),直线分别与椭圆交于两点,其中点满足,且.①证明直线与轴交点的位置与无关;②若∆面积是∆面积的5倍,求的值;(2)若圆:.是过点的两条互相垂直的直线,其中交圆于、两点,交椭圆于另一点.求面积取最大值时直线的方程.
某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中、是过抛物线焦点的两条弦,且其焦点,,点为轴上一点,记,其中为锐角.(1)求抛物线方程;(2)如果使“蝴蝶形图案”的面积最小,求的大小?
已知向量,,其中.函数在区间上有最大值为4,设.(1)求实数的值;(2)若不等式在上恒成立,求实数的取值范围.
已知正方体的棱长为.(1)求异面直线与所成角的大小;(2)求四棱锥的体积.
已知函数是偶函数。(1)求的值;(2)设函数,其中实数。若函数与的图象有且只有一个交点,求实数的取值范围。