已知数列中,且点在直线上。(1)求数列的通项公式;(2)求函数的最小值;(3)设表示数列的前项和。试问:是否存在关于的整式,使得对于一切不小于2的自然数恒成立?若存在,写出的解析式,并加以证明;若不存在,试说明理由。
如图,四棱锥中,是的中点,,,且,,又面. (1) 证明:; (2) 证明:面; (3) 求四棱锥的体积.
已知函数,其中,的图象与直线的交点的横坐标成公差为的等差数列 ⑴求的解析式; ⑵若在中,,,求的面积.
已知函数 (1)讨论的单调区间; (2)若对任意的,总存在成立,求a的取值范围.
(2)若过点作曲线E的互相垂直的弦PQ和MN,求四边形PMQN面积的最大值和此时弦所在的直线方程.
已知,B、D是圆上两动点,且四边形ABCD是矩形(1)求顶点C的轨迹E的方程;