在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(1)求d,an;(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.
已知命题:,命题:方程表示焦点在轴上的双曲线. (1)命题为真命题,求实数的取值范围; (2)若命题“”为真,命题“”为假,求实数的取值范围.
已知在锐角中,内角所对的边分别是,且. (1)求角的大小; (2)若,的面积等于,求的大小.
如图,椭圆(a>b>0)的上、下顶点分别为A、B,已知点B在直线l:上,且椭圆的离心率e =. (1)求椭圆的标准方程; (2)设P是椭圆上异于A、B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ中点,直线AM交直线l于点C,N为线段BC的中点,求证:OM⊥MN.
已知离心率为的椭圆的顶点恰好是双曲线的左右焦点,点是椭圆上不同于的任意一点,设直线的斜率分别为. (1)求椭圆的标准方程; (2)当,在焦点在轴上的椭圆上求一点Q,使该点到直线(的距离最大。 (3)试判断乘积“(”的值是否与点(的位置有关,并证明你的结论;
双曲线的中心在原点,右焦点为,渐近线方程为 . (1)求双曲线的方程; (2)设直线:与双曲线交于、两点,问:当为何值时,以为直径的圆过原点;