为迎接6月6日的“全国爱眼日”,某高中学生会从全体学生中随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图,若视力测试结果不低于5.0,则称为“好视力”.(1)写出这组数据的众数和中位数;(2)从这16人中随机选取3人,求至少有2人是“好视力”的概率;(3)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望.
在平面直角坐标系中,已知,直线, 动点到的距离是它到定直线距离的倍. 设动点的轨迹曲线为. (1)求曲线的轨迹方程. (2)设点, 若直线为曲线的任意一条切线,且点、到的距离分别为,试判断是否为常数,请说明理由.
如图1,在等腰梯形CDEF中,CB、DA是梯形的高,,,现将梯形沿CB、DA折起,使且,得一简单组合体如图2示,已知分别为的中点. 图1 图2(1)求证:平面; (2)求证: ;(3)当多长时,平面与平面所成的锐二面角为?
某市举行一次数学新课程骨干培训活动,共邀请15名使用不同版本教材的数学教师,具体情况数据如下表所示:
现从这15名教师中随机选出2名,则2人恰好是教不同版本的女教师的概率是.且.(1)求实数,的值(2)培训活动现随机选出2名代表发言,设发言代表中使用人教B版的女教师人数为,求随机变量的分布列和数学期望.
已知向量,(1)若,求 (2)设,若,求的值.
如图,已知三棱锥的侧棱两两垂直,且,,是的中点.(1)求异面直线与所成的角的余弦值(2)求二面角的余弦值(3)点到面的距离