一个盒子里装有三张卡片,分别标记有数字,,,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为a,b,c. (Ⅰ)求"抽取的卡片上的数字满足a+b=c"的概率; (Ⅱ)求"抽取的卡片上的数字a,b,c不完全相同"的概率.
如图,在三棱柱中,已知,,,. (1)求证:; (2)设(),且平面与所成的锐二面角的大小为30°,试求的值.
已知数列满足,,. (1)求证:是等差数列; (2)证明:.
已知向量,,. (1)若⊥,求的值; (2)若∥,求的值.
已知数列的前n项和为,设数列满足. (1)若数列为等差数列,且,求数列的通项公式; (2)若,,且数列,都是以2为公比的等比数列,求满足不等式的所有正整数n的集合.
已知函数. (1)当时,求的单调减区间; (2)若方程恰好有一个正根和一个负根,求实数的最大值.