(本题14分)已知函数在处取得极值,且在处的切线的斜率为1。(Ⅰ)求的值及的单调减区间;(Ⅱ)设>0,>0,,求证:。
某货轮在A处看灯塔S在北偏东30°,它以每小时36海里的速度向正北方向航行,40分钟航行到B处,看灯塔S在北偏东75°,求这时货轮到灯塔S的距离.
已知 1)若,求的单调递增区间 2)当 时,的最大值为4,求的值 3)在2)的条件下,求满足且的集合
已知锐角满足,,求.
解三角形方程(每小题4分) 1) 2) 3)
(本小题满分17分)某小区每月向居民收取卫生费,计费方法是:3人和3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元.设计一个算法,根据输入的人数,计算应收取的卫生费,并画出程序框图.