(本小题满分12分)已知各项均为正数的数列的前项和满足(1)求的值; (2)求的通项公式;(3)是否存在正数使下列不等式:对一切成立?若存在,求出M的取值范围;若不存在,请说明理由
已知函数,若对任意恒有,求的取值范围。
.设函数f(x)=-a+x+a,x∈(0,1],a∈R*.(1)若f(x)在(0,1]上是增函数,求a的取值范围;(2)求f(x)在(0,1]上的最大值.
已知数列Sn为该数列的前n项和,计算得观察上述结果,推测出Sn(n∈N*),并用数学归纳法加以证明.
求证:
已知函数 .(1)若函数的图象过原点,且在原点处的切线斜率是,求的值;(2)若函数在区间上不单调,求的取值范围.