(本题14分)口袋内有()个大小相同的球,其中有3个红球和个白球.已知从口袋中随机取出一个球是红球的概率是,且。若有放回地从口袋中连续地取四次球(每次只取一个球),在四次取球中恰好取到两次红球的概率大于。(Ⅰ)求和;(Ⅱ)不放回地从口袋中取球(每次只取一个球),取到白球时即停止取球,记为第一次取到白球时的取球次数,求的分布列和期望。
(本小题满分12分)已知数列满足=5,且其前项和. (Ⅰ)求的值和数列的通项公式; (Ⅱ)设为等比数列,公比为,且其前项和满足,求的取值范围.
(本小题满分13分)已知. (1)若,函数在其定义域内是增函数,求的取值范围; (2)的图象与轴交于)两点,中点为,求证:.
(本小题满分13分)如图,已知圆E:,点,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q. (Ⅰ)求动点Q的轨迹的方程; (Ⅱ)设直线与(Ⅰ)中轨迹相交于两点,直线的斜率分别为(其中).△的面积为, 以为直径的圆的面积分别为.若恰好构成等比数列, 求的取值范围.
(本小题满分13分)为了加强环保建设,提高社会效益和经济效益,某市计划用若干年时间更换10000辆燃油型公交车。每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车。今年初投入了电力型公交车辆,混合动力型公交车辆,计划以后电力型车每年的投入量比上一年增加,混合动力型车每年比上一年多投入辆.设、分别为第年投入的电力型公交车、混合动力型公交车的数量,设、分别为年里投入的电力型公交车、混合动力型公交车的总数量。 (1)求、,并求年里投入的所有新公交车的总数; (2)该市计划用年的时间完成全部更换,求的最小值.
(本小题满分12分)如图,在四棱锥中,,四边形是菱形,且交于点,是上任意一点. (1)求证:; (2)已知二面角的余弦值为,若为的中点,求与平面所成角的正弦值.