(本题14分)口袋内有()个大小相同的球,其中有3个红球和个白球.已知从口袋中随机取出一个球是红球的概率是,且。若有放回地从口袋中连续地取四次球(每次只取一个球),在四次取球中恰好取到两次红球的概率大于。(Ⅰ)求和;(Ⅱ)不放回地从口袋中取球(每次只取一个球),取到白球时即停止取球,记为第一次取到白球时的取球次数,求的分布列和期望。
已知定义域为的奇函数,当时, . (1)求函数在上的解析式; (2)解方程.
(1)计算: (2)已知集合,求.
设函数是奇函数的导函数,,当时,, (Ⅰ)判断函数的奇偶性; (Ⅱ)证明函数在上为减函数; (Ⅲ)求不等式的解集.
已知椭圆的左焦点为,离心率为,点M在椭圆上且位于第一象限,直线FM被圆截得的线段的长为c,. (Ⅰ)求直线FM的斜率; (Ⅱ)求椭圆的方程; (Ⅲ)设椭圆上动点P在x轴上方,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围.
设椭圆E的方程为,点O为坐标原点,点A的坐标为,点B的坐标为,点M在线段AB上,满足,直线OM的斜率为. (Ⅰ)求E的离心率e; (Ⅱ)设点C的坐标为,N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.