设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是0.6,0.5,0.5,0.4,各人是否使用设备相互独立, (1)求同一工作日至少3人需使用设备的概率; (2)实验室计划购买k台设备供甲、乙、丙、丁使用,若要求"同一工作日需使用设备的人数大于k的概率小于0.1,求k的最小值.
已知函数 f ( x ) = 2 sin ( ω x ) ,其中常数 ω > 0 ; (1)若 y = f ( x ) 在 - π 4 , 2 π 3 上单调递增,求 ω 的取值范围; (2)令 ω = 2 ,将函数 y = f ( x ) 的图像向左平移 π 6 个单位,再向上平移1个单位,得到函数 y = g ( x ) 的图像,区间 a , b ( a , b ∈ R 且 a < b )满足: y = g ( x ) 在 a , b 上至少含有30个零点,在所有满足上述条件的 a , b 中,求 b - a 的最小值.
甲厂以 x 千克/小时的速度运输生产某种产品(生产条件要求 1 ≤ x ≤ 10 ),每小时可获得利润是 100 ( 5 x + 1 - 3 x ) 元. (1)要使生产该产品2小时获得的利润不低于3000元,求 x 的取值范围; (2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.
如图,在长方体 A B C D - A 1 B 1 C 1 D 1 中, A B = 2 , A D = 1 , A 1 A = 1 ,证明直线 B C 1 平行于平面 D A 1 C ,并求直线 B C 1 到平面 D 1 A C 的距离.
给定常数 c > 0 ,定义函数 f x = 2 x + c + 4 - x + c ,数列 a 1 , a 2 , a 3 , ⋯ 满足 a n + 1 = f a n , n ∈ N * . (1)若 a 1 = - c - 2 ,求 a 2 及 a 3 ; (2)求证:对任意 n ∈ N * , a n + 1 - a n ≥ c ; (3)是否存在 a 1 ,使得 a 1 , a 2 , ⋯ , a n , ⋯ 成等差数列?若存在,求出所有这样的 a 1 ,若不存在,说明理由.
已知函数 f x , x ∈ R . (Ⅰ) 若直线 y = k x + 1 与 f x 的反函数的图像相切, 求实数 k 的值; (Ⅱ) 设 x > 0 , 讨论曲线 y = f x 与曲线 y = m x 2 m > 0 公共点的个数. (Ⅲ) 设 a < b , 比较 f a + f b 2 与 f b - f a b - a 的大小, 并说明理由.