已知函数 f ( x ) = 2 sin ( ω x ) ,其中常数 ω > 0 ; (1)若 y = f ( x ) 在 - π 4 , 2 π 3 上单调递增,求 ω 的取值范围; (2)令 ω = 2 ,将函数 y = f ( x ) 的图像向左平移 π 6 个单位,再向上平移1个单位,得到函数 y = g ( x ) 的图像,区间 a , b ( a , b ∈ R 且 a < b )满足: y = g ( x ) 在 a , b 上至少含有30个零点,在所有满足上述条件的 a , b 中,求 b - a 的最小值.
(本小题满分12)已知中心在坐标原点O的椭圆C经过点A(2,3),且 点F(2,0)为其右焦点。 (1)求椭圆C的方程; (2)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。
(本小题满分12)如图①在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E,F,G分别是线段PC、PD,BC的中点,现将ΔPDC折起,使PD⊥平面ABCD(如图②) (1)求证AP∥平面EFG; (2)求平面EFG与平面PDC所成角的大小; (3)求点A到平面EFG的距离。
(本小题满分10)某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60)...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题: (1)求成绩落在[70,80)上的频率,并补全这个频率分布直方图; (2)估计这次考试的及格率(60分及以上为及格) (3)把90分以上(包括90分)视为成绩优秀,那么从成绩是60分以上(包括60分)的学生中选一人,求此人成绩优秀的概率。
0.035
(本小题满分10)设命题,命题;如果“”为真,“”为假,求的取值范围。
已知数列满足,且,. 数列为等差数列,⑴求实数的值; ⑵求数列的通项公式及前项和