已知函数 f ( x ) = 2 sin ( ω x ) ,其中常数 ω > 0 ; (1)若 y = f ( x ) 在 - π 4 , 2 π 3 上单调递增,求 ω 的取值范围; (2)令 ω = 2 ,将函数 y = f ( x ) 的图像向左平移 π 6 个单位,再向上平移1个单位,得到函数 y = g ( x ) 的图像,区间 a , b ( a , b ∈ R 且 a < b )满足: y = g ( x ) 在 a , b 上至少含有30个零点,在所有满足上述条件的 a , b 中,求 b - a 的最小值.
从某校参加2012年全国高中数学联赛预赛的450名同学中,随机抽取若干名同学,将他们的成绩制成频率分布表,下面给出了此表中部分数据.(1)根据表中已知数据,你认为在①、②、③处的数值分别为 , , .(2)补全在区间 [70,140] 上的频率分布直方图;(3)若成绩不低于100分的同学能参加决赛,那么可以估计该校大约有多少学生能参加决赛?
已知的边所在直线的方程为,满足, 点在所在直线上且.(Ⅰ)求外接圆的方程;(Ⅱ)一动圆过点,且与的外接圆外切,求此动圆圆心的轨迹的方程;(Ⅲ)过点斜率为的直线与曲线交于相异的两点,满足,求的取值范围.
设函数.(Ⅰ)若,求的最小值;(Ⅱ)若,讨论函数的单调性.
如图,PA垂直于矩形ABCD所在的平面,,E、F分别是AB、PD的中点.(Ⅰ)求证:平面PCE 平面PCD;(Ⅱ)求三棱锥P-EFC的体积.
数列的各项均为正数,为其前项和,对于任意,总有成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.