已知函数 f x , x ∈ R . (Ⅰ) 若直线 y = k x + 1 与 f x 的反函数的图像相切, 求实数 k 的值; (Ⅱ) 设 x > 0 , 讨论曲线 y = f x 与曲线 y = m x 2 m > 0 公共点的个数. (Ⅲ) 设 a < b , 比较 f a + f b 2 与 f b - f a b - a 的大小, 并说明理由.
设函数=的图象的对称中心为点(1,1).(1)求的值; (2)若直线=(∈R)与的图象无公共点,且<2+,求实数的取值范围.
己知函数的定义域为, 函数的值域为,不等式的解集为 (1)求A(2)若同时满足A,B的值也满足C,求的取值范围;
( 13分)设函数(1)研究函数的单调性;(2)判断的实数解的个数,并加以证明.
已知圆,相互垂直的两条直线、都过点.(Ⅰ)当时,若圆心为的圆和圆外切且与直线、都相切,求圆的方程;(Ⅱ)当时,求、被圆所截得弦长之和的最大值.
如图,当甲船位于处时获悉,在其正东方向相距20海里的处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里处的乙船.(Ⅰ)求处于处的乙船和遇险渔船间的距离;(Ⅱ)设乙船沿直线方向前往处救援,其方向与成角,求的值域.