已知函数 f x , x ∈ R . (Ⅰ) 若直线 y = k x + 1 与 f x 的反函数的图像相切, 求实数 k 的值; (Ⅱ) 设 x > 0 , 讨论曲线 y = f x 与曲线 y = m x 2 m > 0 公共点的个数. (Ⅲ) 设 a < b , 比较 f a + f b 2 与 f b - f a b - a 的大小, 并说明理由.
已知为实数,函数.(1) 若,求函数在[-,1]上的极大值和极小值;(2)若函数的图象上有与轴平行的切线,求的取值范围.
设函数.(1)求不等式的解集;(2)若不等式的解集是非空的集合,求实数的取值范围.
某单位要建造一个长方体无盖贮水箱,其容积为48m3,深为3m,如果池底每1m2的造价为40元,池壁每1m2的造价为20元,问怎样设计水箱能使总造价最低,最低总造价是多少元?
已知:,, 求证:.
已知不等式2|x-3|+|x-4|<2a.(Ⅰ)若a=1,求不等式的解集;(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.