在△ABC中,∠A=90°,AB=8,AC=6,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.设AM=x. (1)用含x的代数式表示△MNP的面积S;(2)在动点M的运动过程中,记△MNP与梯形BCNM重合部分的面积为y,试求关于y的函数表达式,并求 x为何值时,y的值最大,最大值是多少?
在△ABC中,D是BC的中点,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF。求证:AF=DC;如果AB=AC,试猜想四边形ADCF的形状,并证明。
已知关于x的一元二次方程x2 = 2(1—m)x—m2的两实数根为x1,x2,求m的取值范围;设y = x1 + x2,当y取得最小值时,求相应m的值,并求出y的最小值。
已知,如图,E、F分别是AB、AC的中点,∠ACD是△ABC的外角,延长EF交∠ACD的平分线于G点,求证:AG⊥CG。
如图,在平面直角坐标系中,△ABC和△A1B1C1关于点E成中心对称(各顶点都在格点上)。点E的坐标是 ;P(a,b)是△ABC的边AC上一点,△ABC是经平移后点P的对应点P2(a+6,b+2),请画出上述平移后的△A2B2C2,其中,点A2的坐标是 ;判断△A2B2C2和△A1B1C1的位置关系是 。
如图,在某广场上空飘着一只气球P,A、B是地面上相距90米的两点,它们分别在气球的正西和正东,测得仰角∠PAB=45°,仰角∠PBA=30°,求气球P的高度(精确到0.1米)。