如图,在某广场上空飘着一只气球P,A、B是地面上相距90米的两点,它们分别在气球的正西和正东,测得仰角∠PAB=45°,仰角∠PBA=30°,求气球P的高度(精确到0.1米)。
先化简,再求值:其中 (1);(2)
计算: (1)(2) (3)(4)4--(2-)+
阅读理解填空: (1)如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ. 证明:∵AB∥CD, ∴∠MEB=∠MFD( ) 又∵∠1=∠2, ∴∠MEB-∠1=∠MFD-∠2, 即∠MEP=∠______ ∴EP∥_____.( ) (2)如图,EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD. 解:∵EF∥AD, ∴∠2=() 又∵∠1=∠2, ∴∠1=∠3, ∴AB∥() ∴∠BAC+=180 o() ∵∠BAC=70 o, ∴∠AGD=。
如图,与是邻补角,OD、OE分别是与的平分线,试判断OD与OE的位置关系,并说明理由.
先化简,再求值:,其中a=-2。