如图1,抛物线经过A(-1,0),C(3,-2)两点,与轴交于点D,与轴交于另一点B.(1)求此抛物线的解析式;(2)若直线()将四边形ABCD面积二等分,求的值;(3)如图2,过点E(1,1)作EF⊥轴于点F,将△AEF绕平面内某点P旋转180°得△MNQ(点M、N、Q分别与点A、E、F对应),使点M、N在抛物线上,求点N和点P的坐标?
已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(要求写出两种情况): 或者 .(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.
如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.
如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE= cm时,四边形CEDF是矩形;②当AE= cm时,四边形CEDF是菱形;(直接写出答案,不需要说明理由)
某班同学响应“阳光体育运动”号召,利用课外时间积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行训练,训练后进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出了如下统计图表:请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为 个;(2)选择长跑训练的人数占全班人数的百分比是 ,该班共有学生 人;(3)根据测试数据,参加篮球定时定点投篮的学生训练后比训练前人均进球数增加了25%,求参加训练之前的人均进球类数.
有三张卡片(形状、大小、颜色、质地都相同),正面分别写上整式x2+1,-x2-2,3,将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图或列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.