设 f ( x ) = x 3 + a x 2 + b x + 1 的导数 f ` ( x ) 满足 f ` ( 1 ) = 2 a , f ` ( 2 ) = - b ,其中常数 a , b ∈ R . (Ⅰ)求曲线 y = f ( x ) 在点 ( 1 , f ( 1 ) ) 处的切线方程. (Ⅱ)设 g ( x ) = f ` ( x ) e - x .求函数 g ( x ) 的极值.
已知直三棱柱中,△为等腰直角三角形,∠=90°,且=,、、分别为、、的中点. (1)求证:∥平面; (2)求证:⊥平面; (3)求二面角的余弦值
某校为了探索一种新的教学模式,进行了一项课题实验,甲班为实验班,乙班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,测试成绩的分组区间为80,90、90,100、100,110、110,120、120,130,由此得到两个班测试成绩的频率分布直方图: (I)完成下面2×2列联表,你能有97.5的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由;
(II)现从乙班50人中任意抽取3人,记表示抽到测试成绩在[100,120的人数,求的分布列和数学期望. 附:,其中
已知函数. (1)求函数的单调递增区间; (2)记△的内角、、所对的边长分别为、、,若,△的面积,,求的值.
已知点(1,2)是函数的图象上一点,数列的前项和是. (1)求数列的通项公式; (2)若,求数列的前项和
)已知函数满足对一切都有,且,当时有. (1)求的值; (2)判断并证明函数在上的单调性; (3)解不等式: