设 f ( x ) = x 3 + a x 2 + b x + 1 的导数 f ` ( x ) 满足 f ` ( 1 ) = 2 a , f ` ( 2 ) = - b ,其中常数 a , b ∈ R . (Ⅰ)求曲线 y = f ( x ) 在点 ( 1 , f ( 1 ) ) 处的切线方程. (Ⅱ)设 g ( x ) = f ` ( x ) e - x .求函数 g ( x ) 的极值.
在中,角所对的边分别为,且满足,. (1)求的面积;(2)若,求的值。
已知等差数列的前项和为,且,. (Ⅰ)求数列的通项公式; (Ⅱ)设,求数列的前项和.
某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如右图所示. (1)下表是年龄的频数分布表,求正整数的值;
(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少? (3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.
设其中,曲线在点处的切线垂直于轴. (Ⅰ) 求的值; (Ⅱ) 求函数的极值.
的内角、、的对边分别为、、,已知,求。