如图,四棱锥P-ABCD中,底面ABCD为正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=60°.(1)求证:平面PBC⊥面PDC(2)设E为PC上一点,若二面角B-EA-P的余弦值为-,求三棱锥E-PAB的体积.
已知命题:方程在上有解,命题:函数的值域为,若命题“或”是假命题,求实数的取值范围.
,点在线段上. (1)若,求的长; (2)若点在线段上,且,问:当取何值时,的面积最小?并求出面积的最小值.
在中,,. (1)求角的大小; (2)若最大边的边长为,求最小边的边长及的面积.
已知△ABC的三内角A、B、C所对的边的长分别为a、b、c, 设向量,,. (1)求∠B; (2)若ABC的面积.
已知函数()的最小值正周期是. (1)求的值; (2)求函数的最大值,并且求使取得最大值的的集合.