已知双曲线 x 2 - y 2 = 2 的右焦点为 F ,过点 F 的动直线与双曲线相交于 A , B 两点,点 C 的坐标是 1 , 0 . (I)证明 C A ⇀ , C B ⇀ 为常数; (II)若动点 M 满足 C M ⇀ = C A ⇀ + C B ⇀ + C O ⇀ (其中 O 为坐标原点),求点 M 的轨迹方程.
如图2-72,棱长为a的正方体ABCD-A1B1C1D1中,E、F分别是B1C1、C1D1的中点 (1)求证:E、F、B、D四点共面; (2)求四边形EFDB的面积.
如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a. (1)求证:MN∥平面PAD; (2)求证:平面PMC⊥平面PCD.
如图所示,已知空间四边形ABCD,E、F分别是边AB、AD的中点,F、G分别是边BC、CD上的点,且,求证直线EF、GH、AC交于一点.
如图所示,正方体ABCD-A1B1C1D1中,E、F分别是AB、BC的中点,G为DD1上一点,且D1G:GD=1:2,AC∩BD=O,求证:平面AGO//平面D1EF.
如图所示,三个平面两两相交,有三条交线,求证这三条交线交于一点或互相平行.