对于,定义一个如下数阵:其中对任意的,,当能整除时,;当不能整除时,.设.(Ⅰ)当时,试写出数阵并计算;(Ⅱ)若表示不超过的最大整数,求证:;(Ⅲ)若,,求证:.
:设锐角三角形的内角的对边分别为,且.(Ⅰ)求的大小;(Ⅱ)求的取值范围.
:.(1)若求的单调区间及的最小值;(2)若,求的单调区间;(3)试比较与的大小.,并证明你的结论.
:已知函数,(1)若,且关于的方程有两个不同的正数解,求实数的取值范围;(2)设函数,满足如下性质:若存在最大(小)值,则最大(小)值与无关.试求的取值范围.
:数列满足:,.(Ⅰ)若数列为常数列,求的值;(Ⅱ)若,求证:;(Ⅲ)在(Ⅱ)的条件下,求证:数列单调递减.
:已知椭圆P的中心O在坐标原点,焦点在x坐标轴上,且经过点,离心率为(1)求椭圆P的方程:(2)是否存在过点E(0,-4)的直线l交椭圆P于点R,T,且满足.若存在,求直线l的方程;若不存在,请说明理由.