甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙、丙面试合格的概率都是,且面试是否合格互不影响.(Ⅰ)求至少有1人面试合格的概率;(Ⅱ)求签约人数的分布列和数学期望.
已知数列{}的前n项和满足:(n∈) ⑴写出数列{}的前三项,,; ⑵求数列{}的通项公式.
已知x-1>0,求的最小值,并求相应的x的值.
已知等差数列{}的前三项为a,4,3a,前n项和为,⑴求a;⑵若=2550,求k的值.
在约束条件下,求z=2x-y的最大值和最小值.
若不等式3-(6-a)x-b<0的解集是 (-1,3),求a和b的值.