已知椭圆的离心率为,且两个焦点和短轴的一个端点是一个等腰三角形的顶点.斜率为的直线过椭圆的上焦点且与椭圆相交于,两点,线段的垂直平分线与轴相交于点.(Ⅰ)求椭圆的方程;(Ⅱ)求的取值范围;(Ⅲ)试用表示△的面积,并求面积的最大值.
有n2(n≥4)个正数,排成n×n矩阵(n行n列的数表),其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比都相等,且满足a24=1,a42=,a43=,求:(1)公比q;(2)用k表示a4k;(3)求a11+a22+a33+…+ann的值。
△ABC中,AB=,AC边上的中线BD=,cosB=,如图所示,求:sinA。
已知,平面上三个向量的模均为1,它们之间的夹角均为120°,求:(1)证明;(2),求k的取值范围。
已知数列{an}中,,求:(1)证明数列{bn}是等比数列;(2)求数列{an}的通项公式。
已知:向量,求:(1)函数的最小正周期及单调递增区间;(2)试写出的图象得到的图象的变换过程。