已知,平面上三个向量的模均为1,它们之间的夹角均为120°,求:(1)证明;(2),求k的取值范围。
(本题8分) 已知命题:“x2-x-6<0” ,命题:“ x2 >1”,若命题“p且q”为真,求x的范围
(15分)数列{an},a1=1, (1)求a2,a3的值; (2)是否存在常数,使得数列是等比数列,若存在,求出的值;若不存在,说明理由; (3)设,
(已知抛物线,过定点的直线交抛物线于A、B两点. (Ⅰ)分别过A、B作抛物线的两条切线,A、B为切点,求证:这两条切线的交点在定直线上. (Ⅱ)当时,在抛物线上存在不同的两点P、Q关于直线对称,弦长|PQ|中是否存在最大值?若存在,求其最大值(用表示),若不存在,请说明理由.
如图所示,已知ABCD是正方形,PD⊥平面ABCD, PD=AD=2. (1)求异面直线PC与BD所成的角; (2)在线段PB上是否存在一点E,使PC⊥平面ADE? 若存在,确定E点的位置;若不存在,说明理由.
(12分) 已知函数 (Ⅰ)求函数f(x)的最小正周期和最小值; (Ⅱ)在给出的直角坐标系中, 画出函数上的图象.