已知数列{an}中,,求:(1)证明数列{bn}是等比数列;(2)求数列{an}的通项公式。
设分别是椭圆的左,右焦点。(1)若是第一象限内该椭圆上的一点,且·=求点的坐标。(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中O为坐标原点),求直线的斜率的取值范围。
已知:数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N*) (1)求数列{an}的通项公式an;(2)若数列{bn}满足bn=log2(an+2),而Tn为数列的前n项和,求Tn.
已知双曲线的离心率,过的直线到原点的距离是 (1)求双曲线的方程;(2)已知直线交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.
(本小题满分12分)如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.(I)求证:A1C//平面AB1D;(II)求二面角B—AB1—D的大小;(III)求点C到平面AB1D的距离.
已知直四棱柱ABCD—A′B′C′D′的底面是菱形,,E、F分别是棱CC′与BB′上的点,且EC=BC=2FB=2.(1)求证:平面AEF⊥平面AA′C′C;(2)求截面AEF与底面ABCD所成二面角的大小.