已知直四棱柱ABCD—A′B′C′D′的底面是菱形,,E、F分别是棱CC′与BB′上的点,且EC=BC=2FB=2.(1)求证:平面AEF⊥平面AA′C′C;(2)求截面AEF与底面ABCD所成二面角的大小.
已知函数f(x)=cos,x∈R. (1)求f的值; (2)若cos θ=,θ∈,求f.
在△ABC中,a=3,b=2,∠B=2∠A, (1)求cos A的值; (2)求c的值.
函数f(x)=Asin(ωx-)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为. (1)求函数f(x)的解析式; (2)设α∈(0,),f()=2,求α的值.
在△ABC中,∠C=90°,M是BC的中点.若sin∠BAM=,则sin∠BAC=________.
如图,四棱柱ABCD—A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点. (1)证明B1C1⊥CE; (2)求二面角B1CEC1的正弦值; (3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.