已知直四棱柱ABCD—A′B′C′D′的底面是菱形,,E、F分别是棱CC′与BB′上的点,且EC=BC=2FB=2.(1)求证:平面AEF⊥平面AA′C′C;(2)求截面AEF与底面ABCD所成二面角的大小.
如图,在五面体 A B C D E F 中, A B / / D C , ∠ B A D = π 2 , C D = A D = 2 ,四边形 A B F E 为平行四边形, F A ⊥ 平面 A B C D , F C = 3 , E D = 7 .求:
(Ⅰ)直线 A B 到平面 E F C D 的距离; (Ⅱ)二面角 F - A D - E 的平面角的正切值.
袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球 (I)试问:一共有多少种不同的结果?请列出所有可能的结果; (Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。
如图,在四棱锥 P - A B C D 中,平面 P A D ⊥ 平面 A B C D , A B ∥ D C , ∆ P A D 是等边三角形,已知 B D = 2 A D = 8 , A B = 2 D C = 4 5 .
(Ⅰ)设 M 是 P C 上的一点,证明:平面 M B D ⊥ 平面 P A D ; (Ⅱ)求四棱锥 P - A B C D 的体积.
设函数 f ( x ) = ( sin ω x + cos ω x ) 2 + 2 cos 2 ω x ( ω > 0 ) 的最小正周期为 2 π 3 . (Ⅰ)求 ω 的最小正周期. (Ⅱ)若函数 y = g ( x ) 的图像是由 y = f ( x ) 的图像向右平移 π 2 个单位长度得到,求 y = g ( x ) 的单调增区间.
等比数列 { a n } 中,已知 a 1 = 2 , a 4 = 16 . (I)求数列 { a n } 的通项公式; (Ⅱ)若 a 3 , a 5 分别为等差数列 { b n } 的第3项和第5项,试求数列 { b n } 的通项公式及前 n 项和 S n .