某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有 60 % ,参加过计算机培训的有 75 % ,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (I)任选1名下岗人员,求该人参加过培训的概率; (II)任选3名下岗人员,求这3人中至少有2人参加过培养的概率.
设函数, (1)若函数在处与直线相切; ①求实数,的值;②求函数上的最大值; (2)当时,若不等式对所有的,都成立,求实数的取值范围.
已知函数的定义域,若在上为增函数,则称为“一阶比增函数”;若在上为增函数,则称为“二阶比增函数”。把所有由“一阶比增函数”组成的集合记为,把所有由“二阶比增函数”组成的集合记为.(1)已知函数,若且,求实数的取值范围; (2)已知,且存在常数,使得对任意的,都有,求的最小值.
已知椭圆的离心率为,其左,右焦点分别为,点是坐标平面内一点,且,,其中为坐标原点. (1)求椭圆的方程; (2)过点,且斜率为的动直线交椭圆于两点,在轴上是否存在定点,使以为直径的圆恒过这个定点?若存在,求出点的坐标;若不存在,请说明理由.
在如图所示的多面体中,已知是正三角形,是的中点. (1)求证:平面; (2)求直线与平面所成角的余弦值; (3)求多面体的体积.
某校高三年级文科学生600名,从参加期末考试的学生中随机抽出某班学生(该班共50名同学),并统计了他们的数学成绩(成绩均为整数且满分为150分),数学成绩分组及各组频数如下表:
(1)写出的值; (2)估计该校文科生数学成绩在120分以上学生人数; (3)该班为提高整体数学成绩,决定成立“二帮一”小组,即从成绩在[135,150]中选两位同学,来帮助成绩在[45,60)中的某一位同学.已知甲同学的成绩为56分, 乙同学的成绩为145分,求甲乙在同一小组的概率.