(本题14分)设定义在R上的函数,对任意有, 且当 时,恒有,若.(1)求;(2)求证: 时为单调递增函数. (3)解不等式.
(本小题满分14分)已知圆方程:,求圆心到直线的距离的取值范围.
(本小题满分12分)已知圆的方程为:.(1)试求的值,使圆的面积最小;(2)求与满足(1)中条件的圆相切,且过点的直线方程.
(本小题满分12分)已知圆和直线,直线,都经过圆C外定点A(1,0).(Ⅰ)若直线与圆C相切,求直线的方程;(Ⅱ)若直线与圆C相交于P,Q两点,与交于N点,且线段PQ的中点为M,求证:为定值.
(本题满分12分) 已知直线:,:,求:(1)直线与的交点的坐标;(2)过点且与垂直的直线方程.
(本小题满分12分)在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.(1)求证:EF∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1