甲、乙两容器中分别盛有两种浓度的某种溶液,从甲容器中取出溶液,将其倒入乙容器中搅匀,再从乙容器中取出溶液,将其倒入甲容器中搅匀,这称为是一次调和,已知第一次调和后,甲、乙两种溶液的浓度分别记为:,,第次调和后的甲、乙两种溶液的浓度分别记为:、.(1)请用、分别表示和;(2)问经过多少次调和后,甲乙两容器中溶液的浓度之差小于.
如图,在正三棱柱ABCDEF中,AB=2,AD=1.P是CF的延长线上一点,FP=t.过A、B、P三点的平面交FD于M,交FE于N. (1)求证:MN∥平面CDE; (2)当平面PAB⊥平面CDE时,求t的值.
如图,正方形ABCD和三角形ACE所在的平面互相垂直.EF∥BD,AB=EF.求证: (1)BF∥平面ACE; (2)BF⊥BD.
在如图所示的多面体中,已知正三棱柱ABCA1B1C1的所有棱长均为2,四边形ABDC是菱形. (1)求证:平面ADC1⊥平面BCC1B1; (2)求该多面体的体积.
如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,且AB=2CD,在棱AB上是否存在一点F,使平面C1CF∥平面ADD1A1?若存在,求点F的位置;若不存在,请说明理由.
如图①,在等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中点.如图②,将△ABE沿AE折起,使二面角BAEC成直二面角,连结BC、BD,F是CD的中点,P是棱BC的中点.求证: 图①图② (1)AE⊥BD; (2)平面PEF⊥平面AECD.