设函数.(1)若曲线在点处与直线相切,求a,b的值;(2)求函数的单调区间.
(本小题满分12分) 已知点F(1,0),直线,设动点P到直线的距离为,已知,且. (1)求动点P的轨迹方程; (2)若,求向量的夹角; (3)如图所示,若点G满足,点M满足,且线段MG的垂直平分线经过点P,求的面积
(本小题满分12分)已知点C(4,0)和直线 P是动点,作垂足为Q,且设P点的轨迹是曲线M。(1)求曲线M的方程;(2)点O是坐标原点,是否存在斜率为1的直线m,使m与M交于A、B两点,且若存在,求出直线m的方程;若不存在,说明理由。
.(本小题满分12分)已知函数,。(1)若函数y=f(x)的切线斜率的最小值为1,求实数a的值;(2)若两个函数图象有且只有一个公共点,求实数a的取值范围。
(本小题满分12分)已知等差数列{an}中a2=8,S10=185.(1)求数列{an}的通项公式an;(2)若从数列{an}中依次取出第2,4,8,…,2n,…项,按原来的顺序排成一个新数列{bn},试求{bn}的前n项和An.
(本小题满分12分)天水一中对其网络服务器开放的4个外网络端口的安全进行监控,以便在发现黑客入侵时及时跟踪锁定。根据跟踪调查发现,这4个网络端口各自受到黑客入侵的概率为0.1,求:(1)恰有3个网络端口受到黑客入侵的概率是多少?(2)至少有2个网络端口受到黑客入侵的概率是多少?