已知☉M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别切☉M于A,B两点.(1)如果|AB|=,求直线MQ的方程.(2)求证:直线AB恒过一个定点.
如图,在直角坐标系 x O y 中,点 P ( 1 , 1 2 ) 到抛物线 C : y 2 = 2 p x ( p > 0 ) 的准线的距离为 5 4 .点 M ( t , 1 ) 是 C 上的定点, A , B 是 C 上的两动点,且线段 A B 被直线 O M 平分.
(1)求 p , t 的值. (2)求 △ A B P 面积的最大值.
已知 a ∈ R ,函数 f x = 4 x 3 - 2 a x + a . (1)求 f x 的单调区间 (2)证明:当 0 ≤ x ≤ 1 时, f x + 2 - a > 0
如图,在侧棱垂直底面的四棱柱 A B C D - A 1 B 1 C 1 D 1 中, A D ∥ B C , A D ⊥ A B , A B = 2 , A D = 2 , B C = 4 , A A 1 = 2 , E 是 D D 1 的中点, F 是平面 B 1 C 1 E 与直线 A A 1 的交点.
(1)证明:
(i) E F ∥ A 1 D 1 ; (ii) B A 1 ⊥ 平面 B 1 C 1 E F ; (2)求 B C 1 与平面 B 1 C 1 E F 所成的角的正弦值.
已知数列 { a n } 的前 n 项和为 S n ,且 S n = 2 n 2 + n , n ∈ N + ,数列 { b n } 满足 a n = 4 log 2 b n + 3 , n ∈ N . (1)求 a n , b n ; (2)求数列 { a n · b n } 的前 n 项和 T n .
在 ∆ A B C 中,内角 A , B , C 的对边分别为 a , b , c ,且 b sin A = 3 a cos B 。 (1)求角 B 的大小; (2)若 b = 3 , sin C = 2 sin A ,求 a , c 的值