已知数列 { a n } 的前 n 项和为 S n ,且 S n = 2 n 2 + n , n ∈ N + ,数列 { b n } 满足 a n = 4 log 2 b n + 3 , n ∈ N . (1)求 a n , b n ; (2)求数列 { a n · b n } 的前 n 项和 T n .
已知集合A=,分别根据下列条件,求实数的取值范围(1) (2)
已知.(1)求函数的图像在处的切线方程;(2)设实数,求函数在上的最大值.(3)证明对一切,都有成立.
已知数列{an}满足Sn+an=2n+1, (1) 写出a1, a2, a3,并推测an的表达式;(2) 用数学归纳法证明所得的结论。
设函数在及时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对于任意的,都有成立,求c的取值范围.
已知函数的图象过点P, 且在点M处的切线方程为.(1) 求函数的解析式; (2) 求函数的单调区间.