已知数列 { a n } 的前 n 项和为 S n ,且 S n = 2 n 2 + n , n ∈ N + ,数列 { b n } 满足 a n = 4 log 2 b n + 3 , n ∈ N . (1)求 a n , b n ; (2)求数列 { a n · b n } 的前 n 项和 T n .
设向量 (1)若,求x的值 (2)设函数,求f(x)的最大值
已知函数其中a是实数.设,为该函数图象上的两点,且. (1)指出函数f(x)的单调区间; (2)若函数f(x)的图象在点A,B处的切线互相垂直,且,求的最小值; (3)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.
设,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6). (1)确定a的值; (2)求函数f(x)的单调区间与极值.
已知函数. (1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.
如图,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连结AE,BE.证明: (1)∠FEB=∠CEB; (2)EF2=AD·BC.