已知.(1)求函数的图像在处的切线方程;(2)设实数,求函数在上的最大值.(3)证明对一切,都有成立.
(本小题满分13分)已知椭圆经过点(p,q),离心率其中p,q分别表示标准正态分布的期望值与标准差。(1)求椭圆C的方程;(2)设直线与椭圆C交于A,B两点,点A关于x轴的对称点为。①试建立的面积关于m的函数关系;②莆田十中高三(1)班数学兴趣小组通过试验操作初步推断:“当m变化时,直线与x轴交于一个定点”。你认为此推断是否正确?若正确,请写出定点坐标,并证明你的结论;若不正确,请说明理由。
如图,在三棱柱中,已知,侧面(1)求直线C1B与底面ABC所成角的正弦值;(2)在棱(不包含端点上确定一点的位置,使得(要求说明理由).(3)在(2)的条件下,若,求二面角的大小.
(本小题满分13分)已知为锐角,且,函数,数列{}的首项.(1) 求函数的表达式;(2)在中,若A=2,,BC=2,求的面积(3) 求数列的前项和
从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同。(1)若抽取后又放回,抽3次,①分别求恰2次为红球的概率及抽全三种颜色球的概率;②求抽到红球次数的数学期望(2)若抽取后不放回,抽完红球所需次数为的分布列及期望。
已知抛物线C:x=2py(p>0)上一点A(m,4)到其焦点的距离为.(Ⅰ)求p和m的值;(Ⅱ)设B(-1,1),过点B任作两直线A1B1,A2B2,与抛物线C分别交于点A1,B1,A2,B2,过A1,B1的抛物线C的两切线交于P,过A2,B2的抛物线C的两切线交于Q,求PQ的直线方程.