如图,在直角坐标系 x O y 中,点 P ( 1 , 1 2 ) 到抛物线 C : y 2 = 2 p x ( p > 0 ) 的准线的距离为 5 4 .点 M ( t , 1 ) 是 C 上的定点, A , B 是 C 上的两动点,且线段 A B 被直线 O M 平分.
(1)求 p , t 的值. (2)求 △ A B P 面积的最大值.
如图所示,四边形EFGH所在平面为三棱锥A-BCD的一个截面,四边形EFGH为平行四边形. (1)求证:AB∥平面EFGH,CD∥平面EFGH. (2)若AB=4,CD=6,求四边形EFGH周长的取值范围.
在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.若M是线段AD的中点, 求证:GM∥平面ABFE.
如图,在正方体ABCD-A1B1C1D1中,E,F,G,M,N分别是B1C1,A1D1,A1B1,BD,B1C的中点, 求证:(1)MN∥平面CDD1C1. (2)平面EBD∥平面FGA.
在四棱锥P -ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°. (1)求四棱锥的体积. (2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.
直三棱柱ABC-A1B1C1的底面为等腰直角三角形,∠BAC=90°,AB=AC=2,AA1=2,E,F分别是BC,AA1的中点. 求(1)异面直线EF和A1B所成的角. (2)三棱锥A-EFC的体积.