已知数列的前项和和通项满足(,是大于0的常数,且),数列是公比不为的等比数列,.(1)求数列的通项公式;(2)设,是否存在实数,使数列是等比数列?若存在,求出所有可能的实数的值,若不存在说明理由;(3)数列是否能为等比数列?若能,请给出一个符合的条件的和的组合,若不能,请说明理由.
(本小题满分10分)将10个白小球中的3个染成红色,3个染成黄色,试解决下列问题: (1)求取出3个小球中红球个数的分布列和数学期望; (2)求取出3个小球中红球个数多于白球个数的概率.
(本小题满分12分) 如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<). (1)求MN的长; (2)当a为何值时,MN的长最小; (3)当MN的长最小时,求面MNA与面MNB所成的二面角的余弦值.
(本小题满分14分) 已知数列的前n项和Sn=9-6n. (1)求数列的通项公式. (2)设,求数列的前n项和.
(本小题满分12分) 过点P(1,4)作直线L,直线L与x,y的正半轴分别交于A,B两点,O为原点, ①△ABO的面积为S,求S的最小值并求此时直线l的方程; ②当|OA|+|OB|最小时,求此时直线L的方程
( 12分)在△ABC中,sinA+cosA=,AC=2,AB=3, 求① tanA的值 ; ② △ABC的面积.