据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为.现已知相距18的A,B两家化工厂(污染源)的污染强度分别为,它们连线上任意一点C处的污染指数等于两化工厂对该处的污染指数之和.设().(1)试将表示为的函数; (2)若,且时,取得最小值,试求的值.
如图,正三棱柱的所有棱长都为2,为中点,试用空间向量知识解下列问题: (1)求证面; (2)求二面角的大小。
(选修4-3坐标系与参数方程) 求直线()被曲线所截的弦长.
(选修4-1 几何证明选讲) 如图,圆O的直径,为圆周上一点,,过作圆的切线,过A作的垂线AD,AD分段别与直线、圆交于点D、E。求的度数与线段AE的长。
(本题16分) 设函数,且,其中是自然对数的底数.(1)求与的关系;(2)若在其定义域内为单调函数,求的取值范围; (3)设,若在上至少存在一点,使得>成立,求实数的取值范围.
(本题16分)某国采用养老储备金制度,公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加 d(d>0), 因此,历年所交纳的储备金数目a1, a2, … 是一个公差为 d的等差数列.与此同时,国家给予优惠的计息政府,不仅采用固定利率,而且计算复利. 这就是说,如果固定年利率为r(r>0),那么, 在第n年末,第一年所交纳的储备金就变为 a1(1+r)n-1,第二年所交纳的储备金就变成 a2(1+r)n-2,……. 以Tn表示到第n年末所累计的储备金总额.(Ⅰ)写出Tn与Tn-1(n≥2)的递推关系式;(Ⅱ)求证Tn=An+ Bn,其中{An}是一个等比数列,{Bn}是一个等差数列.