已知动点到直线的距离是它到点的距离的2倍.记的轨迹为曲线.(1)求曲线的方程;(2)求定圆的方程,使圆与以为圆心,为半径的圆内切.(3)已知定点,是否存在斜率为1的直线与曲线交于不同的两点,使得是以为底边为等腰三角形,若存在,求出的面积,若不存在,说明理由.
已知圆方程为(1)求圆心轨迹的参数方程; (2)点是(1)中曲线上的动点,求的取值范围。
如图,圆O的半径OB垂直于直径AC,M为OA上一点,BM的延长线交圆O于N,过N点的切线交CA的延长线于P。 (1)求证: ; (2)若圆O的半径,OA=OM,求MN的长。
已知函数,(其中且). (1)讨论函数的单调性; (2)若,求函数,的最值; (3)设函数,当时,若对于任意的,总存在唯一 的,使得成立.试求的取值范围.
已知椭圆的焦距为2,点在椭圆上,求椭圆的标准方程;若过点的直线与中的椭圆交于不同的两点(在、之间); 试求与面积之比的取值范围.
下图是一几何体的直观图、正(主)视图、侧(左)视图、俯视图 (1)若为的中点,求证:平面; (2)求平面与平面所成的二面角(锐角)的余弦值.