为了减少放射性污染对人体的影响,某市环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻(时)的关系为,其中是与气象有关的参数,且,若用每天的最大值为当天的综合放射性污染指数,并记作.(1)令,,求的取值范围;(2)国家环保局规定,每天的综合放射性污染指数不得超过,试问目前市中心的综合放射性污染指数是否超标?
已知向量.(Ⅰ)若求;(Ⅱ)设的三边满足,且边所对应的角为,若关于的方程有且仅有一个实数根,求的值.
(本小题满分14分)已知函数。(Ⅰ)求函数的单调区间。(Ⅱ)若上恒成立,求实数的取值范围(Ⅲ)在(Ⅱ)的条件下,对任意的,求证:。
(本小题满分12分)已知椭圆C:的短轴长为,且斜率为的直线过椭圆C的焦点及点。(Ⅰ)求椭圆C的方程;(Ⅱ)已知一直线过椭圆C的左焦点,交椭圆于点P、Q,(ⅰ)若满足(为坐标原点),求的面积;(ⅱ)若直线与两坐标轴都不垂直,点M在轴上,且使为的一条角平分线,则称点M为椭圆C的“左特征点”,求椭圆C的左特征点。
若数列满足,其中为常数,则称数列为等方差数列已知等方差数列满足求数列的通项公式;(Ⅱ)记,则当实数大于4时,不等式能否对于一切的恒成立?请说明理由
(本小题满分12分)如图一所示,边长为1的正方体中,分别为的中点。 (Ⅰ)证明:;(Ⅱ)若为的中点,证明:;(Ⅲ)如图二所示为一几何体的展开图,沿着图中虚线将它们折叠起来,所得几何体的体积为,若正方体的体积为,求的值。